Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(27): e202305353, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186081

RESUMO

Chiral inorganic superstructures have received considerable interest due to the chiral communication between inorganic compounds and chiral organic additives. However, the demanding fabrication and complex multilevel structure seriously hinder the understanding of chiral transfer and self-assembly mechanisms. Herein, we use chiral CuO superstructures as a model system to study the formation process of hierarchical chiral structures. Based on a simple and mild synthesis route, the time-resolved morphology and the in situ chirality evolution could be easily followed. The morphology evolution of the chiral superstructure involves hierarchical assembly, including primary nanoparticles, intermediate bundles, and superstructure at different growth stages. Successive redshifts and enhancements of the CD signal support chiral transfer from the surface penicillamine to the inorganic superstructure. Full-field electro-dynamical simulations reproduced the structural chirality and allowed us to predict its modulation. This work opens the door to a large family of chiral inorganic materials where chiral molecule-guided self-assembly can be specifically designed to follow a bottom-up chiral transfer pathway.

2.
Langmuir ; 39(11): 3871-3882, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36878006

RESUMO

Three-dimensional photoactive self-standing porous materials have been synthesized through the integration of soft chemistry and colloids (emulsions, lyotrope mesophases, and P25 titania nanoparticles). Final multiscale porous ceramics bear 700-1000 m2 g-1 of micromesoporosity depending on the P25 nanoparticle contents. The applied thermal treatment does not affect the P25 anatase/rutile allotropic phase ratio. Photonic investigations correlated with the foams' morphologies suggest that the larger amount of TiO2 that is introduced, the larger the walls' density and the smaller the mean size of the void macroscopic diameters, with both effects inducing a reduction of the photon transport mean free path (lt) with the P25 content increase. A light penetration depth in the range of 6 mm is reached, thus depicting real 3D photonic scavenger behavior. The 3D photocatalytic properties of the MUB-200(x) series, studied in a dynamic "flow-through" configuration, show that the highest photoactivity (concentration of acetone ablated and concentration of CO2 formed) is obtained with the highest monolith height (volume) while providing an average of 75% mineralization. These experimental results validate the fact that these materials, bearing 3D photoactivity, are paving the path for air purification operating with self-standing porous monolith-type materials, which are much easier to handle than powders. As such, the photocatalytic systems can now be advantageously miniaturized, thereby offering indoor air treatment within vehicles/homes while drastically limiting the associated encumbrance. This volumetric counterintuitive acting mode for light-induced reactions may find other relevant advanced applications for photoinduced water splitting, solar fuel, and dye-sensitized solar cells while both optimizing photon scavenging and opening the path for the miniaturization of the processes where encumbrance or a foot-print penalty would be advantageously circumvented.

3.
Nat Nanotechnol ; 17(4): 408-416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288671

RESUMO

Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane-electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Elétrons , Óptica e Fotônica , Fótons
4.
Nano Lett ; 21(7): 3044-3051, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33687219

RESUMO

Efficient generation of anti-Stokes emission within nanometric volumes enables the design of ultracompact, miniaturized photonic devices for a host of applications. Many subwavelength crystals, such as metal nanoparticles and two-dimensional layered semiconductors, have been coupled with plasmonic nanostructures for augmented anti-Stokes luminescence through multiple-harmonic generation. However, their upconversion process remains inefficient due to their intrinsic low absorption coefficients. Here, we demonstrate on-chip, site-specific integration of lanthanide-activated nanocrystals within gold nanotrenches of sub-25 nm gaps via bottom-up self-assembly. Coupling of upconversion nanoparticles to subwavelength gap-plasmon modes boosts 3.7-fold spontaneous emission rates and enhances upconversion by a factor of 100 000. Numerical investigations reveal that the gap-mode nanocavity confines incident excitation radiation into nanometric photonic hotspots with extremely high field intensity, accelerating multiphoton upconversion processes. The ability to design lateral gap-plasmon modes for enhanced frequency conversion may hold the potential to develop on-chip, background-free molecular sensors and low-threshold upconversion lasers.

5.
J Chem Phys ; 153(16): 164701, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138438

RESUMO

Here, we perform a Surface-Enhanced Fluorescence (SEF) intensity and lifetime imaging study on linear arrays of silver half-shells (LASHSs), a class of polarization-sensitive hybrid colloidal photonic-plasmonic crystal unexplored previously in SEF. By combining fluorescence lifetime imaging microscopy, scanning confocal fluorescence imaging, Rayleigh scattering imaging, optical microscopy, and finite difference time domain simulations, we identify with high accuracy the spatial locations where SEF effects (intensity increase and lifetime decrease) take place. These locations are the junctions/crevices between adjacent half-shells in the LASHS and locations of high electromagnetic field enhancement and strong emitter-plasmon interactions, as confirmed also by simulated field maps. Such detailed knowledge of the distributed SEF enhancements and lifetime modification distribution, with respect to topography, should prove useful for improved future evaluations of SEF enhancement factors and a more rational design of efficiency-optimized SEF substrates. These linear arrays of metal-coated microspheres expand the family of hybrid colloidal photonic-plasmonic crystals, platforms with potential for applications in optoelectronic devices, fluorescence-based (bio)chemical sensing, or medical assays. In particular, due to the polarized optical response of these LASHSs, specific applications such as hidden tags for anti-counterfeiting or plasmon-enhanced photodetection can be foreseen.

6.
J Phys Chem Lett ; 11(10): 3835-3840, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32330046

RESUMO

Surface and tip-enhanced Raman spectroscopies in total internal reflection (TIR-SERS and TIR-TERS) are used to characterize the oxidation, spin, and ligation state of cytochrome c (Cc) molecules electrostatically bound on a hydrophilic thiol self-assembled monolayer. TIR-SERS spectra of this model hemoprotein show marker bands typical of the 6cLS ferric state of Cc. The performances of the TIR-TERS technique as a function of the incidence angle are described, showing in particular a significant electromagnetic enhancement of the Raman signal under p-polarized light excitation. TIR-TERS spectra of Cc confirm the 6cLS ferric state assignment deduced from TIR-SERS spectra, thus demonstrating the possibility of probing with nanoscale spatial resolution the 6cLS oxidized form of Cc that is potentially implicated in cell apoptotic processes. The minimal far-field contribution of the sample in TIR-TERS also offers promising perspectives for future nanoscale chemical characterizations of photosensitive biomolecules in complex biological media.


Assuntos
Citocromos c/química , Análise Espectral Raman , Propriedades de Superfície
7.
Nat Nanotechnol ; 14(12): 1110-1115, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659273

RESUMO

The generation of anti-Stokes emission through lanthanide-doped upconversion nanoparticles is of great importance for technological applications in energy harvesting, bioimaging and optical cryptography1-3. However, the weak absorption and long radiative lifetimes of upconversion nanoparticles may significantly limit their use in imaging and labelling applications in which a fast spontaneous emission rate is essential4-6. Here, we report the direct observation of upconversion superburst with directional, fast and ultrabright luminescence by coupling gap plasmon modes to nanoparticle emitters. Through precise control over the nanoparticle's local density of state, we achieve emission amplification by four to five orders of magnitude and a 166-fold rate increase in spontaneous emission. We also demonstrate that tailoring the mode of the plasmonic cavity permits active control over the colour output of upconversion emission. These findings may benefit the future development of rapid nonlinear image scanning nanoscopy and open up the possibility of constructing high-frequency, single-photon emitters driven by telecommunication wavelengths.

8.
Nanoscale Adv ; 1(3): 1070-1076, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31304458

RESUMO

Despite the exciting optical properties metamaterials exhibit, their implementation in technology is being hampered nowadays by the inherent losses of their metal constituents and the expensive and low-throughput procedures used. As an alternative, we present a new design of double fishnet metamaterials that can be easily realized combining two inexpensive and up-scalable techniques: nanosphere lithography and metallic electrodeposition. A monolayer of polystyrene spheres is used as a template for the infiltration of two symmetric gold layers separated by an air gap. The effective refractive index of the metamaterial can be easily tuned by the appropriate choice of the diameter of the spheres and the gap width between the metallic layers, varying its value from positive to negative. The good agreement between optical measurements and finite-difference time-domain simulations confirms the success of our process. Fishnet metamaterials with refractive index going from 1.5 until -1.0 in the near infrared range are demonstrated and the key parameters for these architectures provided.

9.
Nano Lett ; 19(8): 5790-5795, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31345033

RESUMO

The physics of collective optical response of molecular assemblies, pioneered by Dicke in 1954, has long been at the center of theoretical and experimental scrutiny. The influence of the environment on such phenomena is also of great interest due to various important applications in, e.g., energy conversion devices. In this Letter, we demonstrate both experimentally and theoretically the spatial modulations of the collective decay rates of molecules placed in proximity to a metal interface. We show in a very simple framework how the cooperative optical response can be analyzed in terms of intermolecular correlations causing interference between the response of different molecules and the polarization induced on a nearby metallic boundary and predict similar collective interference phenomena in excitation energy transfer between molecular aggregates.

10.
Nanoscale ; 10(35): 16568-16573, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30141812

RESUMO

The precise positioning of plasmonic nanoscale objects and organic molecules can significantly boost our ability to fabricate hybrid nanoarchitectures with specific target functionalities. In this work, we used a DNA origami structure to precisely localize three different fluorescent dyes close to the tips of hollow gold nanotriangles. A spectral dependence of plasmon-enhanced fluorescence is evidenced through co-localized AFM and fluorescence measurements. The experimental results match well with explanatory FDTD simulations. Our findings open the way to the bottom-up fabrication of plasmonic routers operating through plasmon energy transfer. They will allow one to actively control the direction of light propagation.


Assuntos
DNA/química , Transferência de Energia , Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície , Fluorescência , Ouro
11.
Sci Rep ; 7(1): 4107, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642582

RESUMO

Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by an organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to a collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effictive thin metal layer.

12.
Nanoscale ; 8(43): 18476-18482, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27778016

RESUMO

We propose a new type of nanodevice, capable of both path-selectivity and anisotropic lasing, that is based on loss-compensation and amplification by a localized plasmon polariton. The nanodevice is a Y-shaped plasmonic nanostructure embedded in an anisotropic host medium with gain. The anisotropy leads to path selectivity, an effect which is more pronounced once gain is included. Such a device is potentially realizable via bottom-up techniques. The path-selectivity may be coupled with activation of a rotation of the anisotropic host medium for inducing a light-guiding switching functionality.

13.
Nanoscale ; 7(5): 2009-22, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25553777

RESUMO

Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from individual plasmonic oligomers are investigated by confocal Raman micro-spectroscopy and time-resolved fluorescence microscopy coupled to steady state micro-spectroscopy. The nanoparticle (NP) oligomers are made of either ligand protected Au or Au@SiO2 core-shell colloidal NPs, which were assembled into ordered arrays by atomic force microscopy (AFM) nanoxerography. A strong dependence of the SERS emission on the polarization of incident light relative to the specific geometry of the plasmonic oligomer was observed. The SEF studies, performed on a large collection of NP oligomers of various known configurations showed interesting fluorophore decay rate modification and red-shift of the emission spectra. The experimental results are analyzed theoretically by employing finite-difference time-domain (FDTD) simulations on equivalent realistic structures, within the local density of optical states (LDOS) framework. The presented results, together with the proven potential of the LDOS approach as a useful common tool for analyzing both SERS and SEF effects further the general understanding of plasmon-related phenomena in nanoparticle oligomers.

14.
Opt Express ; 19(18): 17697-712, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935138

RESUMO

Owing to the competition between the radiative and non-radiative decay channels occurring in plasmonic assemblies, we show here how to conceive a long pass emission filter and actually design it. We report the synthesis of gold@silica nanoparticles grafted with dye molecules. The control of the thickness of the silica shell allows us to tune the distance between the metal core and the dye molecules. Assemblies of small number (1 to 7) of these core-shell (CS) particles, considered as multimers, have also been produced for the first time. We show that the shaping of the emission spectra of the multimers is drastically enhanced by comparison with the corresponding monomers. We also show a strong enhancement of the decay rates at the LSP resonance, dominated by the non-radiative energy tranfer from the active medium to the metal. The decay rates decrease as the detuning between the long wavelength emission and the LSP resonance increases.

15.
Phys Chem Chem Phys ; 12(38): 11993-9, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20844781

RESUMO

We describe the preparation and characterization of photonic colloidal crystals from silica spheres with incorporated luminescent [Mo(6)Br(14)](2-) cluster units. These structures exhibit strong angle-dependent luminescent properties. The incorporation of one or several planar defects in the periodic structures gives rise to the creation of a passband in the stopband. In the energy range of this passband, an increase of the emission intensity has been found.

16.
Nanoscale ; 2(5): 786-92, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20648325

RESUMO

Combining both electromagnetic simulations and experiments, it is shown that the photonic pseudo band gap (PPBG) exhibited by a silica opal can be fully controlled by Atomic Layer Deposition (ALD) of titania into the pores of the silica spheres constituting the opal. Different types of opals were assembled by the Langmuir-Blodgett technique: homogeneous closed packed structures set up of, respectively, 260 and 285 nm silica spheres, as well as opal heterostructures consisting of a monolayer of 430 nm silica spheres embedded within 10 layers of 280 nm silica spheres. For the stepwise infiltration of the opals with titania, titanium isopropoxide and acetic acid were used as metal and oxygen sources, in accordance with a recently published non-aqueous approach to ALD. A shift of the direct PPBG, its disappearance, and the subsequent appearance and shifting of the inverse PPBG are observed as the opal is progressively filled. The close agreement between simulated and experimental results is striking, and promising in terms of predicting the properties of advanced photonic materials. Moreover, this work demonstrates that the ALD process is rather robust and can be applied to the coating of complex nanostructures.


Assuntos
Géis/química , Dióxido de Silício/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química
17.
J Am Chem Soc ; 131(34): 12201-10, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19655758

RESUMO

We investigate the temporal dynamics of terrylene diimide molecule with four phenoxy rings (TDI) in a poly(styrene) (PS) matrix in the supercooled regime by use of single molecule spectroscopy. By recording both fluorescence lifetime and linear dichroism observables simultaneously, we show that the TDI dye molecule is a versatile probe of the local dynamics in the polymer. The molecule is able to undergo conformational changes, as indicated by lifetime fluctuations and/or reorientation jumps, as indicated by both observables on different time scales. Owing to molecular mechanics and quantum calculations, we could assign the conformational changes to folding/unfolding event(s) of one or more arms with respect to the conjugated core. We tentatively attribute the different spatial extents of the locally probed motions to the alpha and beta relaxation processes occurring in the PS matrix.

18.
Biophys J ; 93(8): 2877-91, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17573424

RESUMO

A new membrane probe, based on the perylene imide chromophore, with excellent photophysical properties (high absorption coefficient, quantum yield (QY) approximately 1, high photostability) and excited in the visible domain is proposed for the study of membrane rafts. Visualization of separation between the liquid-ordered (Lo) and the liquid-disordered (Ld) phases can be achieved in artificial membranes by fluorescence lifetime imaging due to the different decay times of the membrane probe in the two phases. Rafts on micrometer-scale in cell membranes due to cellular activation can also be observed by this method. The decay time of the dye in the Lo phase is higher than in organic solvents where its QY is 1. This allows proposing a (possible general) mechanism for the decay time increase in the Lo phase, based on the local field effects of the surrounding molecules. For other fluorophores with QY<1, the suggested mechanism could also contribute, in addition to effects reducing the nonradiative decay pathways, to an increase of the fluorescence decay time in the Lo phase.


Assuntos
Bicamadas Lipídicas/química , Fluidez de Membrana , Microdomínios da Membrana/química , Microdomínios da Membrana/ultraestrutura , Microscopia de Fluorescência/métodos , Técnicas de Sonda Molecular , Perileno/química , Conformação Molecular
19.
Photochem Photobiol Sci ; 6(6): 614-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17549262

RESUMO

Several authors demonstrated that an oligonucleotide based pH-sensitive construct can act as a switch between an open and a closed state by changing the pH. To validate this process, specially designed fluorescence dye-quencher substituted oligonucleotide constructs were developed to probe the switching between these two states. This paper reports on bulk and single molecule fluorescence investigations of a duplex-triplex pH sensitive oligonucleotide switch. On the bulk level, only a partial quenching of the fluorescence is observed, similarly to what is observed for other published switches and is supposed to be due to intermolecular interactions between oligonucleotide strands. On the single molecule level, each DNA-based nanometric construct shows a complete switching. These observations suggest the tendency of the DNA construct to associate at high concentration.


Assuntos
DNA/química , Nanoestruturas/química , Oligonucleotídeos/química , Espectrometria de Fluorescência/métodos , Sequência de Bases , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico
20.
Chemistry ; 13(4): 1291-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17066497

RESUMO

[2]- and [3]-rotaxanes with a tetraphenoxy perylene diimide core were synthesized. Hydrogen bonding between the wheel and the imide changes the optical properties of the perylene chromophore: the absorption and fluorescence spectra are red-shifted. The decay times of the rotaxanes are shorter in comparison with that of the axle. Single molecule fluorescence measurements reveal relatively narrow distributions of emission maxima and decay times. The averages are in agreement with ensemble measurements. The observed red shifts make the perylene diimide a suitable chromophore for sensing the position of the wheel on the axle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...